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Abstract

In the first part of this dissertation, chemical exchange and the use of R1ρ

rotating frame relaxation experiment for its study are discussed. Beginning

with the Bloch-McConnell equations, new expressions are derived for the

spin relaxation rate constant in the rotating frame, R1ρ, for chemical ex-

change between two or more sites that have distinct magnetic environments

and Larmor frequencies. The 2-site results are accurate provided that the

spin relaxation decay is dominated by a single exponential damping constant

and are applicable to a wider range of conditions than existing theoretical

descriptions. The n-site results are accurate when the population of one of

the sites is much greater than that of others.

The second part of this dissertation discusses the prediction of protein

backbone flexibility using machine learning. Using a data set of 16 proteins,

a neural network has been trained to predict backbone 15N generalized order

parameters from the three-dimensional structures of proteins. The average

prediction accuracy, as measured by the Pearson correlation coefficient be-

tween experimental and predicted values of the square of the generalized

order parameter is 71.4%. The network parameterization contains six input

features. Predicted order parameters for non-terminal amino acid residues

depends most strongly on local packing density and the probability that the

residue is located in regular secondary structure.

iii



Acknowledgements

My adviser, Arthur Palmer (Columbia University) took an active part in the

work described here. Some of the results pertaining R1ρ relaxation are a prod-

uct of our collaboration with Daniel Abergel (Ecole Normale Supérieure).

Helpful discussions with Burkhard Rost, Ann McDermott, Wayne Hendrick-

son (Columbia University) and Daniel Raleigh (Stony Brook) are gratefully

acknowledged.

Software written in the course of this research is available upon request.

The prediction program discussed in Part II can also be used through its web

interface accessible from the lab web site.

iv



Preface

This dissertation discusses two of the projects I worked on as a graduate

student in Arthur Palmer’s lab at Columbia. Both of the projects deal with

protein dynamics. However, the first project, described in Part I, deals with

the chemical exchange model of dynamical processes.

On the other hand, the second project discusses dynamical processes that

can be thought of as fluctuations near the average or equilibrium state.

The first project is involved in deriving analytical expressions and quali-

tative results pertaining the NMR phenomena it discusses, while the second

project takes a more ”black box” approach with regard to NMR: it is assumed

that the order parameter S2 accurately describes the local flexibility of the

protein backbone, and machine learning is used in an attempt to predict

these characteristics from the protein structure alone.

The results described in the first part of the dissertation were published

in [1] and [2], and the n-site generalizations are being submitted by Arthur

Palmer and me to the Journal of Magnetic Resonance. The material of

these papers was reorganized here for consistency in notation and to remove

redundancies.

Part II constitutes the bulk of the manuscript we are preparing for sub-

mission to peer review.

v
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Introduction

Proteins undergo large conformational changes during their transition from

one functional form to another. Additionally, evidence exists that conforma-

tional dynamics governs the rate of biomolecular recognition, catalysis and

allosteric regulation [3], [4].

The time scales of protein dynamics span a continuous spectrum from

picoseconds for small atomic perturbations, to nanoseconds for larger loop

motions, to microseconds and more for large conformational changes.

Figure 1 schematically illustrates a conformational energy landscape that

includes two interconverting conformational states.

Ideally, we would like to extract the information about the individual

states, such as the Larmor frequencies [5] of the nuclei, as well as the transi-

tion rates and the equilibrium populations.

The faster, picosecond to nanosecond time-scale dynamics can be thought

of as the motion within the individual potential energy ”wells”. This type of

dynamics is also interesting due to the fact that the widths of the ”wells” are

related to the amount of disorder, i.e. the entropy of each conformational

state. Therefore, the widths are relevant to the thermodynamic stability of

the conformational states. NMR allows us to measure a related quantity

that describes the amplitude of the rotational fluctuations of the individual

segments of the protein backbone and side-chains [6, 7]
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Figure 1: Illustration of the various types of protein conformational dynamics
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Part I

Theoretical Study of R1ρ

Relaxation and Free Precession

in the Presence of Chemical

Exchange

1 Introduction

1.1 Chemical Exchange

Chemical exchange is a collective term for dynamical processes that can

be modelled as conversions among a finite set of discrete states, where the

conversions happen very quickly compared to the life-times of the relatively

stable states.

In general, we are interested in a chemical reaction or conformational

transition that exchanges a nuclear spin between n sites Ai with distinct
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magnetic environments,

k12

A1 ⇀↽ A2

k21

,

k13

A1 ⇀↽ A3

k31

, . . . ,

kij

Ai ⇀↽ Aj

kji

, . . . ,

k(n−1)n

An−1 ⇀↽ An

kn(n−1)

, (1)

in which kij is the reaction rate constant for the transition from ith to jth

site. The chemical kinetics of such a system are described by the equation:

d

dt
~c = K~c, (2)

in which the kinetics matrix is given by:

K =



−s1 k21 . . . kn1

k12 −s2 . . . kn2

...
...

. . .
...

k1n k2n . . . −sn


, (3)

Kij = kji for i 6= j,

Kii = −si = −
n∑

j = 1

j 6= i

kij, (4)

and the elements of ~c are the site populations of the reacting species. The

equilibrium site populations are defined by K~c = 0.

Although the reactions are depicted in Eq. 1 as first-order, higher-
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order ligand-binding or oligomerization reactions can be treated by defining

pseudo-first-order rate constants [8]. The kinetic processes are studied by

NMR spectroscopy while the system remains in chemical equilibrium.

1.2 R1ρ relaxation in the absence of chemical exchange

The R1ρ experiment consists, essentially, of irradiating the sample, already

placed in a strong constant magnetic field, with a radiofrequency (rf) field of

constant amplitude and frequency, and observing the time evolution of the

nuclear spin magnetization.

The time evolution typically follows a monoexponential decay pattern.

The rate constant of the decay, R1ρ, is what the name of the experiment is

derived from.

In the absence of exchange processes, the time evolution of the nuclear

spin magnetization of the individual sites is independent of other sites.

The ith site is characterized by the longitudinal and transverse intrin-

sic relaxation rates, R1i and R2i, respectively, and the resonance (Larmor)

frequency, Ωi.

If the frequency of the applied rf field is ωrf , and its amplitude, defined

by the Rabi frequency, is ω, then the time evolution of the 3-dimensional

magnetization of the ith site is given by the Bloch equation [5]:

d

dt
~Mi = Li

~Mi + R1i
~M0i, (5)
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in which

Li =


−R2i −δi 0

δi −R2i −ω

0 ω −R1i

 , (6)

the resonance offset for the ith site in the rotating frame is defined as

δi = Ωi − ωrf , (7)

~Mi = (Mxi, Myi, Mzi)
T is the 3-dimensional Cartesian magnetization vector;

~M0i = (0, 0, M0i)
T is the time-independent thermal equilibrium magnetiza-

tion in the absence of the rf field.

1.3 R1ρ relaxation in the presence of chemical exchange

The state of the n-site system, presented in Eq. 1, is described by a 3n-

dimensional magentization vector

~M =



~M1

~M2

...

~Mn


(8)

Its time evolution is a superposition of the precession-relaxation of Eq. 5

and the exchange processes of Eq. 2 and is given by the Bloch-McConnell
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equation [9]:

d

dt
~M = D ~M + ~B, (9)

where

D = L + K⊗ 1s, (10)

L = ⊕n
i=1Li =



L1

L2

. . .

Ln


(11)

~B =



R11
~M01

R12
~M02

...

R1n
~M0n


, (12)

1s is the identity matrix in the spin space, i.e. the 3x3 identity matrix, and

⊗ and ⊕ denote the direct product and sum, respectively.

1.4 Fast and slow exchange

The exchange rates are referred to as slow, intermediate, or fast on the chem-

ical shift time scale, if they are much smaller than, comparable to, or much

greater than the differences among the Larmor frequencies.

The Larmor frequencies are proportional to the value of the static mag-

netic field of the NMR spectrometer; therefore, the time scale of the exchange
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process can depend on the NMR spectrometer utilized.

1.5 Previous results

In experimental studies, the dependence of R1ρ on experimental conditions,

such as the amplitude and the frequency of the rf field, is used to determine

the rate constants, site populations, and Larmor frequencies for nuclear spins

affected by the kinetic process.

The most common theoretical expression for R1ρ, previously used, re-

quires that exchange kinetics are fast on the chemical shift time scale, i.e.

the chemical exchange rate constant is much greater than the difference be-

tween the Larmor frequencies of the exchanging nuclear spins [10]. Such

exchange regime prevents the experimental determination of the individual

Larmor frequencies and the site populations independently. An expression

also has been reported that is applicable to all kinetic regimes provided that

one of the sites is much more populated than others, the frequency of the

applied rf field coincides with the population average Larmor frequency, and

the longitudinal relaxation rate R1 equals the transverse relaxation rate R2

[11]. The restriction of the applied rf field frequency is unfortunate, since, as

will be shown below, varying it is a powerful utility.
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2 Eigenvalue Problem. RF Field Inhomo-

geneity.

In general, Eq. 9 is a first-order linear differential equation with constant

coefficients. Its solution has the form

~M(t) =
3n∑
i=1

eλit~ln + ~a, (13)

where λi is the ith eigenvalue of the matrix D in Eq. 10, ~li is proportional

to the corresponding eigenvector, and ~a is the stationary solution.

For realistic experimental conditions, numerical simulations establish that

the matrix D has n real eigenvalues and n pairs of complex ones with rela-

tively large imaginary parts. In practice, ω varies at different points within

the macroscopic NMR sample due to instrumental imperfections. The ω in-

homogeneity introduces variability in the eigenvalues and in the orientation

of the eigenbasis. While the latter effect is insignificant, eigenvalue inhomo-

geneity results in rapid, on the time scale of the variation of ω due to the

inhomogeneity or faster, averaging of the oscillatory (i.e. corresponding to

nonreal eigenvalues) components to zero. In many cases of interest, one real

eigenvalue is significantly geater than the other n−1 ones. On experimentally

accessible time scales, the largest (least negative) real eigenvalue dominates

the evolution of the magnetization components and the relaxation decay is

essentially monoexponential. Thus, the problem of finding the relaxation
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rate R1ρ reduces to finding the largest real eigenvalue λ of the matrix D

from Eq. 10:

R1ρ = −λ (14)

Since we are only interested in the eigenvalue of matrix D, we shall ignore

the free term in Eq. 9 henceforth.

3 Two sites

3.1 General case

In this section, we consider the simplest and most widely used model of

chemical exchange that involves only two sites:

k12

A1 ⇀↽ A2,

k21

(15)

in which k12 is the rate constant for the forward reaction and k21 is the rate

constant for the reverse reaction.

For two sites, the Bloch-McConnell evolution equation Eq. 9 becomes

d

dt

 ~M1

~M2

 =

 L1 − k12 k21

k12 L2 − k21


 ~M1

~M2

 . (16)

The matrix in Eq. 16 has a 6x6 dimensionality, and its characteristic
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polynomial is of sixth order. The roots of a sixth-order polynomial, in gen-

eral, can not be found analytically. We are interested in finding a reasonable

analytical approximation of the largests real eigenvalue.

One approach to finding the eigenvalue closest to zero is to linearize the

characteristic polynomial of the matrix [1]. Here, we shall use this approach

in combination with what amounts to the steady-state approximation.

In order to characterise the evolution of the average magnetisation, new

variables are defined as ~〈M〉 = ~M1 + ~M2 and ~Mdiff = p2
~M1 − p1

~M2, where

p1 and p2 are the fractional populations.

In the new variables, the Bloch-McConnell equations are transformed to:

d

dt

 ~〈M〉

~Mdiff

 =

 L̄ −∆

−p1p2∆ C− k


 ~〈M〉

~Mdiff

 , (17)

where

L̄ = p1L1 + p2L2, (18)

C = p2L1 + p1L2, (19)

∆ = L2 − L1, (20)

k = k12 + k21. (21)
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The eigenvalue problem for equation (17) is

∣∣∣∣∣∣∣
L̄− λ −∆

−p1p2∆ C− k − λ

∣∣∣∣∣∣∣ = 0. (22)

in which |. . . | denotes the determinant. The determinant of a product is

the product of the determinants; therefore, the matrix in Eq. (22) can be

multiplied from the left by the following non-degenerate matrix having a

determinant of unity:

 1 ∆(C− k − λ)−1

0 1

 . (23)

Equation 22 becomes:

∣∣∣∣∣∣∣
L̄− papb∆(C− k − λ)−1 − λ 0

−papb∆ C− k − λ

∣∣∣∣∣∣∣ = 0, (24)

which is equivalent to

∣∣L̄ + p1p2∆(λ + k −C)−1∆− λ
∣∣ = 0. (25)

If λ + k −C ≈ k −C, then Eq. (25) can be approximated by equation

∣∣L̄ + p1p2∆(k −C)−1∆− λ
∣∣ = 0. (26)
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This assumption is equivalent to the well-known steady-state approximation

for solving systems of differential equations.

Equation 26 is of third order in λ. We simplify it further by linearizing it

with respect to λ and r = R2 − R1, i.e. keeping terms that are constant or

linear, but not bilinear, quadratic or higher-order. We also assume that the

intrinsic relaxation rates do not differ between the sites, i.e. R11 = R12 = R1

and R21 = R22 = R2.

After some tedious simplifications of the resulting linear equation, we can

write down the expression for R1ρ = −λ:

R1ρ = R1 cos2 θ + R2 sin2 θ +
sin2 θp1p2δ

2k

ω2
e1ω

2
e2/ω

2
e + k2 − 2 sin2 θp1p2δ2

, (27)

where

Ω̄ = p1Ω1 + p2Ω2, (28)

∆Ω = Ω̄− ωrf , (29)

δ = δ2 − δ1 = Ω2 − Ω1, (30)

ω2
e1 = δ2

1 + ω2, (31)

ω2
e2 = δ2

2 + ω2, (32)

ω2
e = ∆Ω2 + ω2, (33)

θ = arctan(ω/∆Ω). (34)
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In the fast-exchange limit, ω2
e1ω

2
e2/ω

2
e + k2 − 2 sin2 θp1p2δ

2 ≈ ω2
e + k2.

Therefore, (27) agrees with the previously derived expression for the relax-

ation rate constant in the fast-exchange limit [10]:

R1ρ = R1 cos2 θ + R2 sin2 θ +
sin2 θp1p2δ

2k

ω2
e + k2

. (35)

Equation 27 generalizes Eq. 35 and is one of the main results of this section.

In the fast-exchange limit, R1ρ does not depend on δ, p1 and p2 separately,

but only on their combination p1p2δ
2. Therefore δ, p1 and p2 cannot be

determined independently of each other. In contrast, outside of the fast-

exchange limit, independent determination of δ, p1 and p2 is possible due to

the dependence of the denominator in Eq. 27 on these parameters through

ωe1 and ωe2.

The linearized expression given by Eq. 27, the fast-limit expression given

by Eq. 35, and the exact numerical solution to are compared in Fig. 2. For

the indicated conditions, the linearized result agrees very well with the exact

result for all values of k; in contrast, the fast-limit expression agrees well

with the exact result when k/δ > 4, but fails for exchange processes that

are slower. Numerical simulations for a wider range of conditions indicate

that the linearized approximation is accurate except for cases in which site

populations are nearly equal and exchange is not in the fast limit. Under

these conditions, the assumption that the relaxation decay is dominated by

a single damping constant is violated.
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Figure 2: Exchange rate dependence of R1ρ. Results are calculated for (—)
exact numerical solution, (· · ·) Eq. 27, and (- - -) Eq. 35. Calculations used
ω = 1000s−1, ∆Ω = 2000s−1, p2/p1 = 0.3, δ = 2400s−1, R1 = 1.5s−1, and
R2 = 11s−1.
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3.2 Asymmetric populations

In many systems of practical interest, the free energy difference between sites

is greater than kBT ; consequently, the site populations are unequal because

even small differences in energy translate into large population differences

through the Boltzman equation [8, 12]. Eq. 27 can be simplified further if

one of the sites is much more populated than the other. In the asymmetric-

populations limit, p1 � p2; consequently, δ1 ≈ ∆Ω and ωe ≈ ωe1. Using these

relations to simplify Eq. 27, the relaxation rate constant in the asymmetric-

populations limit becomes:

R1ρ = R1 cos2 θ + R2 sin2 θ +
sin2 θp1p2δ

2k

ω2
e2 + k2

. (36)

Eq. 36 generalizes the expression previously reported for the special condi-

tions R1 = R2 and ωrf = Ω̄ [11]. This result allows both ω and ωrf to be

varied experimentally.

3.3 Experimental data analysis using Rex

From Eq. 27, the relaxation rate constant in the limit ω →∞ or ∆Ω →∞

is given by:

Reff = R1 cos2 θ + R2 sin2 θ. (37)
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The excess relaxation rate constant is defined as [13]:

Rex ≡
R1ρ −Reff

sin2 θ
. (38)

Values of R1 and R2 can be determined independently from R1ρ [8], which al-

lows Rex to be defined experimentally. From Eqs. (27, 37, 38), the linearized

expression for Rex is given by:

Rex =
p1p2δ

2k

ω2
e1ω

2
e2/ω

2
e + k2 − 2 sin2 θp1p2δ2

. (39)

Similarly, from Eqs. [7, 32, 27, 37, 38], the asymmetric-populations limit

expression for Rex is:

Rex =
p1p2δ

2k

(Ω2 − ωrf )2 + ω2 + k2
. (40)

Finally, from Eqs. [29, 33, 35, 37, 38], the fast-limit expression for Rex is:

Rex =
p1p2δ

2k

(Ω̄− ωrf )2 + ω2 + k2
. (41)

The asymmetric-populations limit expression given by Eq. 40, the fast-

limit expression given by Eq. 41, and the exact numerical solution to the

eigenvalue problem are compared in Fig. 3. For the indicated conditions, in

which k/δ = 0.6, results calculated using Eq. 40 agree very well with the

exact numerical results; in contrast, the fast-limit expression yields dramat-
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Figure 3: Offset dependence of Rex. Results are calculated for (—) Rex

obtained from Eq. 38 using the exact numerical solution, (· · ·) Eq. 40, and
(- - -) Eq. 41. Calculations used ω = 1000s−1, k = 1500s−1, p2/p1 = 0.05,
δ = 2400s−1, R1 = 1.5s−1, and R2 = 11s−1.

ically different predictions.

As indicated by Eq. 40 and Fig. 3, the maximum value of Rex occurs

when the rf frequency is resonant with the Larmor frequency of the minor site

B. Thus, in the asymmetric-populations limit, varying the resonance offset

at a single static magnetic field strength provides an experimental approach

to determining Ω2 even if pb is too low to permit direct observation of the

corresponding spectral line [12].



19

4 Multiple sites

Some of the results of the previous chapter can be generalized to the case of

n > 2 sites:

k12

A1 ⇀↽ A2

k21

,

k13

A1 ⇀↽ A3

k31

, . . . ,

kij

Ai ⇀↽ Aj

kji

, . . . ,

k(n−1)n

An−1 ⇀↽ An

kn(n−1)

. (42)

4.1 Asymmetric populations

4.1.1 General case

We consider the case for which the population of the first site is much greater

than the populations of others: p1 � p2, . . . , pn. Through the detailed bal-

ance relationship, this assumption implies that the first column of the kinetics

matrix (Eq. 3) K is much smaller than the rest of the matrix, specifically its

first row. By K′, we shall denote the matrix obtained from K by formally

setting its first column to zero. Additionally, R1i and R2i are assumed to be

much smaller than other non-trivial components of Li. We also introduce an

approximation of Li

L′
i =


0 −δi 0

δi 0 −ω

0 ω 0

 . (43)

Therefore, we can compute the the largest real eigenvalue λ of the matrix

D = L + K⊗ 1s as a perturbed value of the largest real eigenvalue λ′ of the
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matrix D′ = L′ + K′ ⊗ 1s, where L′ = ⊕n
i=1L

′
i. Examination of D′, shows

that the eigenvalue λ′ is zero, and the corresponding right eigenvector is

~x =



~v

~0

...

~0


, (44)

in which ~v is both the left and right eigenvector of L′
1 corresponding to its

zero eigenvalue:

~v =
1

ωe1


ω

0

δ1

 , (45)

and:

ωei =
√

δ2
i + ω2. (46)

The first 3 elements of the corresponding left eigenvector ~y of D′ are also ~v.

Therefore, the eigenvector can be looked for in the form

~y =



~v

~v

...

~v


−



~0

~z2

...

~zn


(47)
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From perturbation theory [14],

λ = λ′ +
~yT(D−D′)~x

~yT~x
. (48)

Using the facts that λ′ = 0, ~yT~x = 1, and

~yT(L− L′)~x = ~vT(L1 − L′
1)~v (49)

= − δ2
1

ω2
e1

R11 −
ω2

ω2
e1

R21 (50)

yields:

λ = − δ2
1

ω2
e1

R11 −
ω2

ω2
e1

R21 + ~yT((K−K′)⊗ 1s)~x (51)

Using Eq. 47 and the fact that only the first column of K−K′ is non-zero,

we obtain the following expression for λ:

λ = − δ2
1

ω2
e1

R11 −
ω2

ω2
e1

R21 −
n∑

i=2

k1i~z
T
i ~v. (52)

The values ~zi are found by substituting Eq. 47 into the definition of the

left eigenvector ~yTD′ = λ′~yT = 0. Transposing and simplifying the resulting

expressions, and noting that L′
i
T = −L′

i, the following equation for the ~zi
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values is obtained:



s2 + L′
2 −k23 . . . −k2n

−k32 s3 + L′
3 . . . −k3n

...
...

. . .
...

−kn2 −kn3 . . . sn + L′
n





~z2

~z3

...

~zn


=



L′
2~v

L′
3~v

...

L′
n~v


(53)

Equation 53 is linear, so it can be solved symbolically (and automatically)

for any n to give the result:

R1ρ = cos2 θ1R11 + sin2 θ1R21 +
n∑

i=2

k1i~z
T
i ~v, (54)

where sin θ1 = ω/ωe1 and cos θ1 = δ1/ωe1. Equation 54 is one of the primary

results of this section.

For convenience, we also define the effective chemical exchange contribu-

tion to relaxation as:

Rex = R1ρ/ sin2 θ1 −R11/ tan2 θ1 −R21. (55)

From Eqs. 43 and 45, we note (for use in the following) that:

(L′
i+si)

−1 =


si −δi 0

δi si −ω

0 ω si


−1

=
1

si

1

s2
i + ω2

ei


s2

i + ω2 siδi δiω

−siδi s2
i siω

δiω −siω s2
i + δ2

i


(56)
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and

L′
i~v =

ω∆ωi1

ωe1


0

1

0

 (57)

in which ∆ωij = δi − δj. We also define:

~z′i = (L′
i + si)

−1L′
i~v =

ω

ωe1

∆ωi1

s2
i + ω2

ei


δi

si

−ω

 (58)

The following sections consider some special cases of practical interest.

4.1.2 No minor exchange

We refer to the set of all of the exchange reactions that do not involve the

dominant site (site 1) as minor exchange. From Eq. 53, in the absence of

the minor exchange, ~zi = ~z′i. Using this result with the understanding that

si = ki1, we obtain:

R1ρ = cos2 θ1R11 + sin2 θ1R21 + sin2 θ1

n∑
i=2

k1i∆ω2
i1

k2
i1 + ω2

ei

(59)

This result generalizes the 2-site expression in Eq. 54. Figure 4 illustrates

this expression for a 4-site exchange process. The important qualitative result

is that n − 1 local maxima are obtained when δi = 0 for i = 2, . . . , n, i.e.

when the rf is resonant with the minor sites.
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Figure 4: Offset dependence of Rex for a system with no minor exchange.
Solid line represents the exact numerical solution; dashed line shows approx-
imate solution obtained from Eq. 59. Calculations used p1 = 0.90, p2 = 0.05,
p3 = 0.03, p4 = 0.02, δ2−δ1 = 2000s−1, δ3−δ1 = −3000s−1, δ4−δ1 = 4000s−1,
k12 + k21 = 200s−1, k13 + k31 = 200s−1, k14 + k41 = 200s−1, R1 = 1.5s−1,
R2 = 11s−1. ω = 500s−1 (a), ω = 1000s−1 (b). Abscissa indicates the
difference between ωrf and the population-average resonance frequency.
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4.1.3 Weak minor exchange

We shall call the minor exchange weak, if the rate of conversion from every

minor site to the dominant site is much greater than the rates of conversion

between minor sites, i.e.

ki1 � kij, where i, j = 2, . . . , n (60)

Multiplying Eq. 53 from the left by ⊕n
i=2(L

′
i + si)

−1, we obtain:



1s −k23(L′
2 + s2)−1 . . . −k2n(L′

2 + s2)−1

−k32(L′
3 + s3)−1 1s . . . −k3n(L′

3 + s3)−1

...
...

. . .
...

−kn2(L′
n + sn)−1 −kn3(L′

n + sn)−1 . . . 1s





~z2

~z3

...

~zn


=



~z′2

~z′3
...

~z′n


.

(61)

From Eq. 56, the elements of (L′
i + si)

−1 obviously do not exceed 1/si

in absolute value, and because si ≥ ki1, the weak minor exchange condition

60 implies that the off-diagonal elements in Eq. 61 are significantly smaller

than 1. In the zero-order approximation ~zi = ~z′i, as in the case of no minor

exchange, while the next order of approximation uses the expansion (1 +
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εX)−1 ≈ 1− εX:

~zi ≈ ~z′i +
∑

j >= 2

j 6= i

kij(L
′
i + si)

−1~z′j (62)

Combining this result with Eqs. 54 and 58 yields:

R1ρ = cos2 θ1R11 + sin2 θ1R21 + sin2 θ1

n∑
i=2

k1i

s2
i + ω2

ei

[
∆ω2

i1+

1

si

n∑
j = 2

j 6= i

kij∆ωj1

s2
j + ω2

ej

((ω2 + δ1δi)∆ωji + s2
i ∆ωj1 + sisj∆ωi1)

]
. (63)

Figure 5 illustrates this expression for a 3-site exchange process. The effect of

weak minor exchange increases the exchange broadening compared to results

obtained in the absence of minor exchange.
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Figure 5: Offset dependence of Rex for a system with weak minor exchange.
Solid line represents the exact numerical solution; dashed and dotted lines
shows approximate solutions obtained from Eqs. 63 and 59, respectively.
Calculations used ω = 1000s−1, p1 = 0.95, p2 = 0.03, p3 = 0.02, δ2 − δ1 =
2000s−1, δ3 − δ1 = −4000s−1, k12 + k21 = 500s−1, k13 + k31 = 1000s−1, k23 +
k32 = 700s−1, R1 = 1.5s−1, R2 = 11s−1. Abscissa indicates the difference
between ωrf and the population-average resonance frequency.
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4.1.4 Population-averaged values

Let us introduce the population-averaged values:

δ =
n∑

i=1

piδi (64)

ωe =
√

δ2 + ω2 (65)

sin θ = ω/ωe (66)

cos θ = δ/ωe (67)

R1 =
n∑

i=1

piR1i (68)

R2 =
n∑

i=1

piR2i, (69)

The differences resulting from replacing sin θ1, cos θ1, R11, R21 with the

respective population-averaged values in Eqs. 54, 55, 59, and 63, are second-

order (quadratic or bilinear) in pi, R1j and R2j, where i = 2, . . . , n, j =

1, . . . , n. Therefore, these differences can be ignored and population-averaged

values can be substituted into Eqs. 54, 55, 59, and 63.

4.2 Computational fitting experiments

Equation 59 demonstrates that if minor exchange is absent, the exchange

rates are slow, and ω is significantly smaller than any differences among

the resonance frequences, then the local maxima of Rex as a function of the

offset occur close to where the rf is resonant with the minor species. From
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continuity considerations, or from Eq. 63, the same conclusion should apply

to systems with weak minor exchange. One result of this section is that such

n-site systems can be studied in a similar fashion to the asymmetric 2-site

system, as suggested earlier in [1].

Numerical simulations show that even in situations that may be outside

of the weak minor exchange limit, where Eqs. 59 and 63 do not strictly apply,

and when the system does not necessarily have a dominant site, a plot of Rex

as a function of offset frequency often still exhibits n− 1 Lorentzian-shaped

peaks.

Therefore, we sought to examine the feasibility of fitting experimental

R1ρ measurements in these cases and to develop an algorithm suitable for

this task. To this end, we simulated idealized R1ρ measurements involving a

3-site system in which the rf offsets with respect to the resonance frequency of

the first site were taken to be the 30 equidistant points spanning the interval

[−5000, 5000], the populations p1, p2 and p3, as well as the intrinsic relaxation

rates R1 and R2 were assumed known, while the exchange rates and the reso-

nance frequences were to be inferred from the ”experimental” R1ρ relaxation

rates. The intrinsic relaxation rate constants can be obtained experimen-

tally by a variety of approaches [15]. In practice the population-averaged

resonance frequency, instead of the exact knowledge of the resonance fre-

quency of the first site, and any additional known information about the

system would be added as contraints.

The system input parameters were chosen to satisfy the following rela-
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tionships:

ω = 1000

0.4 < p1 < 0.95

0.02, 0.1(1− p1) < p2 < 0.4(1− p1)

p3 = 1− p1 − p2

2000 < δ2 − δ1 < 4000 (70)

2000 < δ1 − δ3 < 4000

100 < k2, ksd, k3 < (δ2 − δ1)/3, (δ1 − δ3)/3

R1 = 1.5

R2 = 11

where k2 = k12 + k21, k3 = k13 + k31, ksd = k23 + k32, all frequencies are in

angular units, and exchange rate constants and relaxation rate constant are in

units of s−1. The inequalities denote the uniform distributions from which the

parameters were selected randomly. Because the site populations are known,

only the sum of the forward and reverse exchange rate constants for each

pair of sites are required: the individual rate constants can be determined

using the detailed balance principle.

Experimentally, only systems with sufficiently low R1ρ values and nar-

row spectral lines can be studied; therefore, only the systems with the free-

precession relaxation rate and the maximum R1ρ values smaller than 100 s−1
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were used, which amounted to 35% of the randomly selected systems.

We used the Levenberg-Marquardt non-linear least-squares fitting algo-

rithm [16] as implemented by the MINPACK optimization package [17] to

perform parameter fitting, and the LAPACK library [18] for eigenvalue cal-

culations. Naive application of the Levenberg-Marquardt algorithm showed

that the minimization problem is fraught with local minima and is subject

to divergence (when one of the unknowns becomes very large). Applying the

theoretical insights described in earlier sections, specifically the fact that the

local minima of Rex occur close to where the rf is resonant with the minor

sites, to the initial choice of unknown variables in the optimization procedure

significantly improved its convergence properties.

To simulate the experimental error, random values taken from the Gaussian

distribution with the standard deviation calculated as a fraction of the maxi-

mum R1ρ value for each system were added to the ”experimental” R1ρ values.

For each error magnitude, the computational experiment was repeated

1000 times with randomly selected system parameters, as described above.

The fitting was considered successful, when the Euclidean distance in the

five dimensional parameter space between the ”true” parameter values and

those returned by the fitting procedure was smaller than 300 s−1 The results

are summarized in Table 1.
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Table 1: Computational fitting experiment results
Error Success rate ∆1 (s−1)
1% 99.1% 33
3% 96.7% 99
10% 65.7% 186

1∆ is the root mean square deviation from the ”true” value

4.3 Free precession evolution

The above formalism is easily adapted to the evolution of transverse mag-

netization in the absence of radiofrequency fields. The resonance line of the

dominant component of the complex magnetization, M+(t), is described by

a resonance frequency and a relaxation rate constant given by:

iΩ−R2 = iδ1 −R21 + λ (71)

in which λ is the eigenvalue of D = L + K, Li = L′
i = i∆ωi1 − ∆R2i with

the largest (least negative) real part, and ∆R2i = R2i − R21. Note that for

free-precession, 1s = 1. The right eigenvector of D′, corresponding to its

zero eigenvalue, is ~x = (1, 0, . . . , 0)T, and by direct analogy to the above

derivation of Eq. 54,

iΩ−R2 = iδ1 −R21 −
n∑

i=2

k1izi (72)
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in which



s2 − L2 −k23 . . . −k2n

−k32 s3 − L3 . . . −k3n

...
...

. . .
...

−kn2 −kn3 . . . sn − Ln





z2

z3

...

zn


= −



L2

L3

...

Ln


. (73)

The resonance frequency and relaxation rate constant are obtained from the

imaginary and real parts of the right-hand-side of Eq. 72, respectively. Equa-

tion 72 is another of the principal results of this paper.

In the absence of minor exchange,

zi =
−i∆ωi + ∆R2i

ki1 − i∆ωi + ∆R2i

=
∆R2i(ki1 + ∆R2i) + ∆ω2

i − i∆ωiki1

(ki1 + ∆R2i)2 + ∆ω2
i

(74)

which yields

Ω = δ1 +
n∑

i=2

k1iki1∆ωi

(ki1 + ∆R2i)2 + ∆ω2
i

(75)

R2 = R21 +
n∑

i=2

k1i
∆R2i(ki1 + ∆R2i) + ∆ω2

i

(ki1 + ∆R2i)2 + ∆ω2
i

. (76)

These equations extend the results of Skrynnikov and coworkers for 2-site

exchange [19]. The n-site Swift-Connick relationships [20] differ from Eqs.

75 and 76 because ∆R2i is replaced by R2i. The present results are more

accurate than the Swift-Connick relationships if ∆R2i are small, but R2i are
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comparable in magnitude to ki1.

For weak minor exchange,

zi = z′i +
(si + ∆R2i + i∆ωi)

(si + ∆R2i)2 + ∆ω2
i

n∑
j = 2

j 6= i

kijz
′
j (77)

in which

z′i =
∆R2i(si + ∆R2i) + ∆ω2

i − i∆ωisi

(si + ∆R2i)2 + ∆ω2
i

(78)

4.3.1 Three sites

For completeness, we provide below some limiting expressions for the ex-

change contribution to the transverse relaxation rate constant, Rex = R2 −

R21, for 3-site chemical exchange. For simplicity, si � ∆R2i and ∆ωi �

∆R2i are assumed; thus, ∆R2i = 0 can be utilized in Eqs. 72-78. The

general result is derived from Eq. 72. In the absence of minor exchange,

Rex =
k12∆ω2

2

k2
21 + ∆ω2

2

+
k13∆ω2

3

k2
31 + ∆ω2

3

(79)

For weak minor exchange,

Rex =
k12∆ω2

2

s2
2 + ∆ω2

2

+
k13∆ω2

3

s2
3 + ∆ω2

3

+
(k13k32∆ω2 + k12k23∆ω3)(s3∆ω2 + s2∆ω3)

(s2
2 + ∆ω2

2)(s
2
3 + ∆ω2

3)

(80)
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5 Fast exchange within a subgroup of sites

The following applies equally to R1ρ relaxation and free-precession evolution.

Herein, we shall use L̂i to denote either evolution operator for site i.

Removing the restriction that the population of the first site is much

greater than the populations of all others, let us assume that molecules in

some of the n sites exchange very rapidly among themselves, in some sense.

Without loss of generality, let these sites be numbered m through n.

If the exchange rates involving sites m through n approach infinity, then

on physical grounds, these n−m+1 sites can be treated as a single effective

site. This can be shown by noting that the (Mm, . . . ,Mn)T vector will have a

quasi-steady state value that belongs to the null space of the kinetics matrix

corresponding to the ”fast” reactions, i.e.

Mi = αiMf (81)

where

αi = pi/
n∑

j=m

pj, (82)

Mf =
n∑

i=m

Mi. (83)

Adding rows m through n of D, and using Eqs. 81 and 83 generates the mas-

ter equation for the new effective system of m sites. The evolution operators

L̂i for sites 1 through m− 1 will remain unchanged. The evolution operator
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for the effective site L̂f , the new mth site, is the population average:

L̂f =
n∑

i=m

αiL̂i (84)

Similarly, the rate constants for the reactions ”leaving” the effective site are

the population averaged values as well:

kfj =
n∑

i=m

αikij, where j < m, (85)

while the rate constants for the reactions ”entering” the effective site are

given by

kjf =
n∑

i=m

kji, where j < m. (86)

Establishing the conditions of applicability of these formulas is beyond

the scope of this work. The results describe the asymptotic behavior of

the system, and are not necessarily valid approximations when the exchange

rates involving sites m through n are merely much greater than other ex-

change rates, the differences between the resonance frequences, offsets, etc.

To illustrate this point, consider the case of free-precession involving three

sites, where the first site is dominant, δ1 = 0, δ2 = −δ3 = δ, R2i = 0, and

the chemical kinetics are completely symmetric with regard to sites 2 and 3.

Then, treating sites 2 and 3 as one effective site predicts Rex = 0 if k23 is
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large. In contrast, the result obtained using Eq. 72 is:

Rex =
2k12δ

2

k2
21 + 2k21k23 + δ2

. (87)

In this particular case, unless k21k23 � δ2, the asymptotic expression is in

error by an amount on the order of k12. Figure 6 illustrates the convergence of

the free-precession R2 relaxation rate for a 3-site system to an effective value

corresponding to a 2-site system, as the exchange rate between sites 2 and 3

grows, while the site populations and other parameters remain constant.

6 Conclusion

Chemical exchange effects in NMR spectroscopy provide powerful approaches

for characterizing kinetic processes, including intramolecular conformational

changes, ligand binding, and folding of proteins and other biological macro-

molecules [8]. Herein, new expressions have been presented that generalize

previous theoretical descriptions for the spin relaxation rate constant in the

rotating frame, R1ρ, for two-site exchange phenomena. The resulting expres-

sions given in Eq. 27, Eq. 54 are accurate provided that the relaxation decay

is dominated by a single exponential damping constant. Table 2 summarizes

the range of applicability of the previous and new theoretical results for the

2-site case.

The new expressions for R1ρ proved to be very valuable for analyzing
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Figure 6: The dependence of free-precession R2 on the rate of minor ex-
change. Solid line represents the exact numerical solution; dashed line shows
the exact solution for the effective 2-site system obtained using Eqs. 84, 85
and 86. Calculations used p1 = 0.80, p2 = 0.13, p3 = 0.07, δ2− δ1 = 3000s−1,
δ3 − δ1 = −3000s−1, k12 + k21 = 300s−1, k13 + k31 = 300s−1, R2 = 11s−1.
Abscissa shows the rate of exchange between sites 2 and 3.

Table 2: Assumptions inherent to existing and new theoretical expressions
Assumptions Davis [10] Meiboom [11] Linearized Asymmetric
ωrf = Ω̄ No Yes No No
R1 = R2 No Yes No No
k12 + k21 >> δ Yes No No No
k12 << k21 No Yes No Yes
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experimental data when exchange is not fast and site populations are unequal

[21].

In particular, in the asymmetric-populations limit, the R1ρ experiment

allows complete characterization of exchange kinetics using data recorded

at a single static magnetic field strength. In contrast, to characterize a

system outside of the fast-exchange limit, the Carr-Purcell-Meiboom-Gill

experiment must be performed at multiple static magnetic field strengths,

which requires inconvenient use of different NMR spectrometers subject to

systematic variability [22].

For the n-site case, new analytic expressions have been presented that

apply to R1ρ and free precession relaxation, when one site population is

dominant.

In particular, systems with one dominant site and sufficiently weak ex-

change among the minor sites will have Rex(ωrf ) relaxation dispersion profiles

composed of n− 1 Lorentzians, as a general rule. These results are expected

to be generally applicable to the investigation of chemical exchange phenom-

ena in proteins and other biological macromolecules using free-precession and

spin-locking techniques.
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Part II

Protein Conformational

Flexibility Prediction Using

Machine Learning

7 Introduction

Dynamical processes in proteins are believed to be closely related to protein

function, including ligand-binding, catalysis, and folding, even though this

relationship is not yet understood in great detail [23]. Moreover, informa-

tion about protein conformational flexibility is becoming important in drug

design [24]. Thus, considerable importance exists in the related problems

of elucidating the microscopic factors that determine protein conformational

flexibility and of predicting flexibility from sequence or structural data.

Theoretical assessments of protein flexibility can derive from computa-

tional simulations with atomistic and mechanistic detail [25] or from more

abstract approaches [26, 27]. Theoretical approaches can be free-standing or

aimed at interpretation of experimental measurements of protein flexibility,

such as crystallographic B-factors [28].

NMR spin relaxation experiments are widely applied for the study of
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the dynamics of macromolecules [6, 7]. NMR spin relaxation data has been

collected for various proteins by a number of different research groups, and

some of these data have been compiled into publicly accessible data banks

[29, 30]. Most commonly, laboratory frame relaxation experiments conducted

for 15N [31, 32] or 2H [33, 34] spins have been used to determine the square

of the generalized order parameter, S2, [35] for backbone amide or side chain

methyl groups, respectively [6].

A number of authors have used the availability of such NMR data as

the basis for further studies of conformational flexibility of proteins. Order

parameters derived from NMR have been compared with other experimen-

tal and theoretical measures of protein flexibility, including crystallographic

B-factors [36], order parameters obtained from fluorescence anisotropy decay

measurements [37, 38], and order parameters obtained from molecular dy-

namics (MD) simulations [39, 40]. Correlations have been uncovered between

order parameters and molecular features, such as secondary structural ele-

ments and amino acid side chain volumes, [29, 41] and amino acid sequence

conservation [42]. Using a database of backbone amide order parameters,

Zhang and Brueschweiler empirically devised a simple analytic method for

predicting generalized order parameters from static three-dimensional struc-

tures [43].

Our goal in the present work is to devise a systematic knowledge-based

method for predicting picosecond to nanosecond protein backbone flexibility

as described by generalized order parameters obtained from NMR measure-
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ments. We are interested in ”learning” S2 as a function of structure from

”examples” without necessarily looking in detail into the physics of the pro-

cess. As ”examples”, we use backbone 15N order parameters deposited into

the Indiana Dynamics Database [29] and the BioMagResBank [30] and the

corresponding 3D structures from the Protein Data Bank [44]. We use a

particular kind of neural network called a multi-layer perceptron with one

hidden layer [45] to optimize the prediction of S2 given the set of ”exam-

ples”. We anticipate that similar approaches can be applied to predicting

slower time scale dynamic properties accessible to NMR experiments [7] and

perhaps to computational protein functionality assessments.

8 Methods

Order Parameter. The angular distribution of the orientations of the back-

bone N-H bond vector on the picosecond to nanosecond time scale is de-

scribed using the square of the generalized order paramter from the Lipari-

Szabo model-free formalism [35]

S2 = (4π/5)
2∑

m=−2

| < Y2,m(Ω) > |2, (88)

where Y2,m(Ω) are the second order spherical harmonics, and Ω describes

the orientation of the N-H bond vector in the protein-attached coordinate

system. In the limiting case of completely isotropic orientation of the bond
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vector with respect to the body of the molecule, S2 = 0. Alternatively,

S2 = 1, if the orientation is fixed.

Data Banks. Table 3 lists the PDB, IDD and BMRB entries that were

used in the present work. As discussed by Goodman et.al. [29], some of

the systematic differences in S2 between different data sets are due to the

differences in the ways the data were collected and analyzed. Therefore,

normalizing S2 to reduce this artificial variation is beneficial. Goodman

et.al. divide each S2 by the average value of S2 for the protein in which the

N-H group resides. We employ a similar linear transformation. However,

under the assumption that the true average order parameter of residues in

the secondary structure is likely to vary less among different proteins than

the order parameter averaged over all residues of the protein, we use the

former as the reference point, ”normalizing” each database entry so that the

average value of S2 for residues in the secondary structure becomes 0.86.

Supervised learning. ”Learning from examples” constitutes what is known

as the supervised learning or the function approximation problem [45], which

is informally stated as follows. Given an unknown function f(~x) and a train-

ing set {(~xi, ~yi)}N
i=1, for which ~yi ≈ f(~xi), find an approximation of the

unknown function f(~x). This approximation is typically obtained from an

adequately general parametrization F (~x, ~w) by optimizing parameters ~w. Su-

pervised learning problems can be solved using artifical neural networks. We

use a special kind of a neural network called a multi-layer perceptron with one

hidden layer [45]. This network architecture corresponds to the parametriza-
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Table 3: Dataset composition
Index PDB entry Chain ID S2 data Relatives
1 3ci2 IDD 1
2 1clb IDD 2 1cdn
3 1cdn IDD 3 1clb
4 1stg IDD 4
5 2bbn A IDD 5
6 1xob IDD 7 1xoa
7 1xoa IDD 8 1xob
8 1gpr IDD 9
9 1bve A IDD 10
10 1itm IDD 13
11 1kun IDD 25
12 2fsp IDD 31
13 1ngl A BMR 4267
14 1vrf A BMR 4096
15 1d2b A BMR 5154
16 1d3z A IDD 11

tion expression:

F = s2(W2s1(W1~x + ~b1) + ~b2), (89)

where weight matrices W1, W2 and bias vectors ~b1, ~b2 are the parameters

adjusted to fit the training data, and s1, s2 are the transfer functions, which

we choose to be an elementwise application of the sigmoid function:

sigm(x) = 1/(e−x + 1). (90)

The function being approximated is the value of S2 for the ith amino acid

residue; therefore, f(~x) is a scalar. Also, the choice of the sigmoid transfer

function in the output layer is particularly convenient, because the order pa-

rameters satisfy the inequality 0 ≤ S2 ≤ 1. The universal approximation
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theorem [45] implies that this parametrization can approximate any contin-

uous function with values within [0, 1] to any given accuracy, if sufficiently

large dimensionalities of W1, W2, b1 and b2 are allowed.

Features. Instead of using the 3D structure of the protein in some machine-

readable form as inputs in the training set, we extracted features of the 3D

structure that appear to be statistically related to conformational flexibility,

such as local density, the size of amino acid residues, and secondary structure

state, and use those features as inputs. Statistical correlations between fea-

tures and S2 were measured using the Pearson correlation coefficient, defined

by

Cxy =
x̄y − x̄ȳ

σxσy

(91)

for two variables x and y. Correlations were considered between S2 for the N-

H bond vector of the ith residue and features for the ith residue and flanking

residues in the amino acid sequence. ”Position” denotes the position of the

residue in the protein chain for which the feature is calculated relative to

the position of the residue for which S2 is measured. Thus, a correlation

coefficient reported for feature p and position k indicates that the correlation

coefficient was calculated using equation 91 with x = S2
i and y = pi+k for

i = 1, N and N is the number of amino acid residues for which data are

available. Ranges of k from -6 to +6 were examined. Correlations between

features and S2 were calculated both by pooling all data for all proteins and

by averaging the correlations obtained for individual proteins.

Feature Descriptions. The DSSP (dictionary of secondary structure of
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proteins) program [46] classifies the secondary structure state of each residue

in the protein as either helix (310, G; α, H; π, I), or extended sheet (E), β

bridge (B), turn (T), bend (S), or ”other” (L). The continuum secondary sec-

ondary structure assignment DSSPcont [41] extends this method by captur-

ing ”uncertainties” of DSSP assignments and assigning an eight-dimensional

vector to each residue. The vector can be thought of as the probabilities of

the respective DSSP assignments. The sum of all eight elements, therefore,

equals 1. Each of the eight DSSPcont probabilities was treated as a feature.

In addition, the feature ”secondary” was defined as the sum of all DSSPcont

values except ’L’ and ’S’.

The feature ”BB H-bonds energy” is the energy of the backbone-to-

backbone H-bonds that involve a given peptide bond, where the energy is

calculated in the same manner as by DSSP.

”Dcom” is the distance between the Cα atom and the center of mass of

the non-hydrogen atoms of the protein. ”Residue Size” is the number of all

non-hydrogen atoms in the residue.

”Tail M” equals 1 if the peptide bond, to which the N-H bond belongs,

is M or fewer residues away from N- or C-terminus, and 0 otherwise. For

example, in a protein chain with residues numbered from 1 to 100, for residues

3 and 99, ”Tail M = 1” will be 0, while ”Tail M = 2” will be 1.

”Loop left” and ”Loop right” show the extent of the non-secondary (loop)

structure towards the N- and C-terminus, respectively. For a given residue,

”Loop right” is one-tenth times the relative position towards the C-terminus



47

of the first residue with a ”secondary” feature (defined above) greater than

0.95 (or 95%). If the residue currently of interest is in secondary structure,

”loop right” is 0.0. If such residue is not found (due to a chain break) or

is found more than 10 residues away, ”loop right” is 1.0. The definition of

”loop left” is analogous.

”Bend(-m, 0, m)” is the cosine of the angle formed by vectors Cα(i + k−

m)Cα(i + k) and Cα(i + k + m)Cα(i + k), where Cα(n), is the Cα atoms of

the nth residue.

Distance dependent features, ”g(rX
k )”, are given by

∑
j f(rXi+k,j), where

rXi+k,j is the distance between the jth atom and the atom X in the (i+ k)th

residue. The summation extends over all heavy atoms, including hetero-

atoms, but not water molecules. When X = H, the reference atom is the

amide hydrogen of the (i+k)th residue and heavy atoms in the (i+k)th and

(i + k− 1)th residues are not included in the summation. When X = O, the

reference atom is the carbonyl oxygen of the (i+k)th residue and heavy atoms

in the (i+k)th and (i+k +1)th residues are not included in the summation.

When X = C, the reference atom is the Cα atom of the residue. The modifier

”(BB)” indicates that the the summation involves only the atoms that are

part of the backbone (N, Cα, C’). The modifier ”(all)” indicates that the

summation exends over all residues. The function hard(x) is defined by,

hard(x) =

 1, if x ≥ 0

0, if x < 0
(92)
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The notation ”1/...” indicates the inverse.

Some of these features are similar to quantities used by other authors. For

example, ”exp(−rH
0 /1Å)” and ”exp(−rO

−1/1Å)” are the components of for-

mula used by Zhang-Brueschweiler to predict S2 [43]. In addition, ”1/hard(7Å−

rC
0 ) (all)” corresponds to the function used by Halle to interpret crystallo-

graphic B-factors [28].

Optimization. To find the optimal, in the least-squared sense, values of

the parameters W1, W2, ~b1, and ~b2, the Levenberg-Marquardt algorithm was

used [16, 47]. The learning process was cross-validated by iteratively selecting

one of the proteins from the data set, excluding its relatives from the data

set, allowing the network to learn S2 from the remaining set and calculating

Pearson correlation between experimental and predicted values of S2. This

step was repeated for all proteins in the dataset. The average correlation was

used as a measure of the quality of the prediction process.

9 Results

Correlations between some of the features we examined and the normalized

squared order parameters for all proteins in the sample set are summarized

in table 4. The average correlations determined by analyzing each protein

independently are shown in table 5.

Because of the finite size of the training set, supervised learning can be

subject to the problem of overfitting/overtraining. Therefore, the number of

adjustible parameters and, consequently, the number of features used by the
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Table 4: Dataset-wide correlations between features and S2 (in percent)
Feature description

Position, k
-6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6

exp(−rO
k /1Å) 4.9 12.8 21.8 28.0 33.7 37.1 32.1 23.9 13.7 4.7 -1.7 -8.5 -9.6

exp(−rO
k /2Å) 8.4 16.9 27.2 34.2 40.8 44.4 39.1 28.1 17.0 6.8 -1.4 -8.4 -9.3

exp(−rO
k /3Å) 9.9 18.5 28.6 35.6 42.0 45.5 40.6 29.6 18.5 8.2 -0.5 -7.4 -8.4

exp(−rO
k /4Å) 10.6 19.0 28.8 35.7 41.7 45.1 40.6 30.1 19.2 9.2 0.5 -6.3 -7.5

exp(−rO
k /5Å) 11.0 19.2 28.5 35.2 41.1 44.3 40.1 30.1 19.6 9.9 1.3 -5.4 -6.7

exp(−rO
k /7Å) 11.4 18.9 27.4 33.5 38.9 41.9 38.3 29.1 19.4 10.4 2.3 -3.9 -5.5

exp(−rO
k /10Å) 11.3 17.7 24.8 30.1 34.7 37.3 34.2 26.3 17.8 9.8 2.7 -2.7 -4.4

1/ exp(−rO
k /1Å) 4.9 12.8 21.8 28.0 33.7 37.1 32.1 23.9 13.7 4.7 -1.7 -8.5 -9.6

1/ exp(−rO
k /2Å) -8.1 -16.6 -25.9 -36.5 -47.7 -54.7 -47.7 -33.6 -21.2 -10.6 -0.1 6.7 8.1

1/ exp(−rO
k /3Å) -12.1 -20.9 -31.1 -41.9 -52.4 -58.1 -52.3 -38.8 -25.5 -13.1 -1.8 5.5 7.9

1/ exp(−rO
k /4Å) -14.2 -23.1 -33.6 -44.0 -53.7 -58.7 -53.9 -41.0 -27.3 -14.1 -2.9 4.8 7.5

1/ exp(−rO
k /5Å) -15.2 -24.2 -34.5 -44.6 -53.4 -58.0 -53.8 -41.2 -27.6 -14.3 -3.2 4.4 7.3

1/ exp(−rO
k /7Å) -15.5 -24.3 -34.1 -43.3 -51.0 -54.8 -50.7 -38.6 -25.6 -13.0 -2.8 4.3 6.9

1/ exp(−rO
k /10Å) -13.9 -21.5 -30.0 -37.6 -43.8 -46.7 -42.7 -31.6 -20.4 -9.9 -1.6 4.2 6.2

exp(−rH
k /1Å) -4.6 -1.2 3.2 9.8 16.3 26.0 33.6 33.3 31.1 22.3 16.5 10.3 8.2

exp(−rH
k /2Å) -1.5 3.9 11.3 20.1 28.4 39.8 46.5 43.0 36.9 27.0 17.9 8.8 5.0

exp(−rH
k /3Å) 0.4 6.5 14.3 23.3 31.6 41.9 47.4 43.1 35.7 26.6 17.0 7.8 3.5

exp(−rH
k /4Å) 1.5 7.7 15.3 24.1 32.1 41.6 46.4 42.0 34.5 25.9 16.6 7.6 3.2

exp(−rH
k /5Å) 2.3 8.4 15.7 24.2 31.9 40.7 45.1 40.8 33.4 25.2 16.2 7.7 3.3

exp(−rH
k /7Å) 3.6 9.2 15.8 23.4 30.5 38.3 42.0 38.0 31.1 23.7 15.4 7.7 3.4

exp(−rH
k /10Å) 4.8 9.5 15.1 21.4 27.3 33.9 36.8 33.2 27.1 20.7 13.6 7.1 3.2

1/ exp(−rH
k /1Å) 2.1 -2.0 -7.4 -15.5 -22.7 -33.6 -38.5 -40.2 -34.1 -25.6 -16.3 -11.2 -8.5

1/ exp(−rH
k /2Å) 0.1 -6.2 -14.1 -24.5 -34.9 -48.2 -53.8 -51.6 -43.8 -32.1 -20.8 -11.5 -6.7

1/ exp(−rH
k /3Å) -1.7 -9.0 -17.9 -29.1 -39.9 -53.1 -58.7 -55.3 -46.6 -34.2 -22.2 -11.3 -5.4

1/ exp(−rH
k /4Å) -2.8 -10.7 -19.8 -30.9 -41.5 -54.0 -59.4 -55.9 -46.9 -34.5 -22.3 -11.1 -4.9

1/ exp(−rH
k /5Å) -3.5 -11.6 -20.7 -31.5 -41.7 -53.6 -58.7 -55.1 -45.9 -33.7 -21.6 -10.6 -4.4

1/ exp(−rH
k /7Å) -4.2 -12.0 -20.7 -30.8 -40.0 -50.7 -55.1 -50.9 -41.4 -29.9 -18.8 -9.0 -3.4

1/ exp(−rH
k /10Å) -4.6 -10.8 -18.1 -26.3 -33.9 -42.7 -46.2 -41.3 -32.5 -22.7 -13.8 -6.3 -1.9

sigm(3Å− rH
k ) -3.5 0.2 6.0 13.1 20.5 31.6 39.0 37.7 34.2 24.7 17.4 10.3 7.4

sigm(4Å− rH
k ) -2.9 1.3 7.9 15.5 23.3 34.8 41.8 39.7 35.1 25.6 17.5 9.6 6.3

sigm(5Å− rH
k ) -2.0 2.8 10.1 18.2 26.2 37.9 44.2 41.0 35.4 25.9 17.2 8.4 4.9

sigm(7Å− rH
k ) -0.2 5.8 13.4 22.2 30.2 41.0 46.4 41.5 34.1 25.2 15.7 6.2 2.2

sigm(10Å− rH
k ) 1.7 7.6 15.3 24.1 31.6 40.7 45.2 39.7 31.9 23.7 14.5 5.5 1.1

1/sigm(3Å− rH
k ) 1.7 -2.9 -8.9 -17.5 -25.8 -37.5 -42.9 -43.4 -37.1 -27.8 -17.7 -11.4 -8.1

1/sigm(4Å− rH
k ) 1.4 -3.7 -10.2 -19.3 -28.4 -40.7 -46.5 -45.8 -39.1 -29.2 -18.6 -11.3 -7.5

1/sigm(5Å− rH
k ) 0.9 -4.8 -12.0 -21.7 -31.5 -44.6 -50.7 -48.5 -41.1 -30.5 -19.5 -10.9 -6.6

1/sigm(7Å− rH
k ) -0.5 -7.4 -15.6 -26.3 -36.8 -50.7 -56.9 -52.3 -43.4 -31.9 -20.5 -9.8 -4.3

1/sigm(10Å− rH
k ) -2.6 -10.1 -18.8 -29.9 -40.1 -53.2 -59.2 -54.3 -45.0 -33.1 -21.4 -9.6 -3.0

hard(3Å− rH
k ) -1.7 -1.7 -2.2 2.9 4.7 11.5 16.4 18.7 18.6 13.1 9.9 8.5 9.6

hard(4Å− rH
k ) -5.0 -2.1 1.6 7.0 12.4 21.0 27.9 28.4 27.8 20.1 15.0 9.9 8.0

hard(5Å− rH
k ) -2.6 -0.7 5.3 9.8 16.1 24.8 31.2 31.6 28.4 20.3 14.5 9.3 7.4

hard(7Å− rH
k ) -2.0 4.1 11.9 20.3 28.4 39.8 44.5 40.0 33.0 23.8 14.7 5.7 2.3

hard(10Å− rH
k ) 1.7 7.6 14.7 23.1 30.6 39.4 44.3 38.5 31.1 23.3 14.1 5.2 1.0

exp(−rN
k /3Å)(BB) 2.1 7.6 16.2 25.9 34.9 43.6 48.4 43.4 35.5 25.6 15.7 6.2 0.7

1/hard(7Å− rC
k ) (all) -2.1 -8.9 -18.4 -29.5 -40.5 -52.4 -52.8 -41.3 -29.6 -17.7 -7.3 0.7 4.3

Dcom -3.4 -10.3 -19.3 -27.9 -33.7 -38.7 -38.8 -32.6 -25.3 -17.4 -8.8 -1.6 2.1
Tail, M = 1 -7.4 -8.7 -10.6 -14.1 -20.5 -21.7 -36.5 -16.3 -9.1 -2.8 2.3 2.8 3.9
Tail, M = 2 -7.4 -9.6 -11.9 -15.1 -21.2 -40.1 -42.3 -22.0 -8.3 -0.5 3.6 4.8 5.5
Tail, M = 3 -6.5 -9.5 -12.4 -15.8 -36.6 -41.9 -41.8 -26.7 -10.9 1.3 5.2 6.2 8.0
Tail, M = 4 -4.7 -8.5 -12.2 -31.2 -38.5 -41.1 -39.3 -26.4 -15.9 -2.2 6.5 8.4 9.2
Tail, M = 5 -2.9 -6.7 -26.3 -33.5 -38.1 -38.7 -36.5 -25.1 -17.0 -8.2 3.5 9.5 10.5
Tail, M = 6 -1.9 -20.0 -27.5 -32.7 -35.8 -35.9 -33.7 -23.6 -17.0 -9.6 -2.7 6.1 10.7
DSSPcont G -7.2 -9.3 -13.4 -10.2 -4.9 -1.9 -0.1 -2.2 -4.7 -2.6 0.3 3.1 1.2
DSSPcont H -5.4 0.1 5.7 12.1 16.2 19.1 22.7 21.2 16.9 11.8 6.5 2.6 -1.1
DSSPcont I -6.4 -14.3 -14.2 -3.4 -0.5 1.0 1.2 0.9 -0.5 -1.7 2.2 3.0 1.4
DSSPcont T 3.3 1.1 -1.5 -6.0 -3.8 0.5 1.4 0.1 2.1 2.3 3.7 7.7 8.9
DSSPcont E 2.7 5.5 7.7 10.7 14.2 16.7 14.9 9.6 5.6 0.6 -2.4 -0.8 -1.4
DSSPcont B 4.2 2.8 2.4 1.8 -0.1 0.9 3.4 -2.9 -0.1 -4.1 -5.7 -4.1 -7.5
DSSPcont S 8.0 2.8 0.8 -8.5 -14.8 -15.6 -20.1 -14.6 -8.4 -4.4 0.9 0.9 2.6
DSSPcont L -2.1 -4.3 -8.8 -12.7 -21.4 -33.2 -33.8 -26.9 -22.4 -12.4 -8.6 -10.0 -4.9
Secondary -3.2 1.8 7.0 16.1 27.3 37.7 41.5 32.0 24.3 13.3 6.6 7.8 2.4
Bend (-1, 0, 1) 1.6 0.9 -0.9 -4.2 -8.6 -15.7 -16.7 -14.6 -13.2 -11.1 -9.8 -9.0 -5.1
Bend (-2, 0, 2) 3.3 2.8 1.3 -1.5 -5.1 -8.3 -10.1 -12.2 -12.0 -11.4 -10.8 -10.2 -6.4
loop left -3.8 -5.8 -9.5 -14.5 -22.6 -28.6 -32.0 -37.6 -35.5 -33.9 -30.3 -30.1 -27.5
loop right -14.4 -19.0 -25.7 -36.0 -40.4 -37.6 -37.6 -17.4 -5.3 1.1 3.9 3.8 4.3
Residue Size -6.4 -1.5 -0.2 4.1 6.4 9.0 10.0 7.2 6.4 2.3 -1.2 -4.1 -6.0
BB H-bonds energy 5.1 -2.5 -7.8 -15.3 -22.3 -27.1 -34.1 -31.3 -26.6 -16.0 -10.0 -2.8 0.8
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Table 5: Average correlations between features and S2 (in percent)
Feature description

Position, k
-6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6

exp(−rO
k /1Å) 5.0 13.6 23.0 29.1 34.4 38.8 32.8 21.5 12.2 1.8 -3.7 -11.8 -11.7

exp(−rO
k /2Å) 8.1 16.9 27.2 33.7 40.5 44.8 38.8 24.1 13.6 1.7 -6.5 -14.6 -14.0

exp(−rO
k /3Å) 9.2 18.0 28.1 34.7 41.6 45.8 40.2 24.9 14.2 2.2 -7.3 -15.2 -14.6

exp(−rO
k /4Å) 9.5 18.3 28.2 34.9 41.8 45.9 40.7 25.4 14.6 2.7 -7.4 -15.1 -14.7

exp(−rO
k /5Å) 9.5 18.3 28.1 34.9 41.8 45.9 40.9 25.7 14.9 3.1 -7.2 -14.9 -14.6

exp(−rO
k /7Å) 9.4 18.2 28.0 34.9 41.7 45.8 41.1 26.1 15.4 3.7 -7.0 -14.4 -14.4

exp(−rO
k /10Å) 9.3 18.0 27.8 34.8 41.7 45.8 41.3 26.5 15.8 4.2 -6.7 -13.9 -14.2

1/ exp(−rO
k /1Å) 5.0 13.6 23.0 29.1 34.4 38.8 32.8 21.5 12.2 1.8 -3.7 -11.8 -11.7

1/ exp(−rO
k /2Å) -6.4 -14.0 -23.0 -33.1 -42.3 -51.8 -45.2 -26.1 -16.9 -5.0 4.8 12.2 11.2

1/ exp(−rO
k /3Å) -8.4 -16.1 -25.9 -36.1 -45.1 -53.9 -48.1 -29.1 -19.2 -6.0 5.0 12.4 12.4

1/ exp(−rO
k /4Å) -9.2 -17.0 -27.2 -37.2 -45.9 -53.9 -48.7 -30.3 -20.2 -6.7 5.0 12.4 12.9

1/ exp(−rO
k /5Å) -9.5 -17.4 -27.8 -37.6 -46.1 -53.5 -48.6 -30.7 -20.5 -7.0 5.0 12.4 13.2

1/ exp(−rO
k /7Å) -9.7 -17.7 -28.3 -37.7 -45.7 -52.4 -47.8 -30.7 -20.5 -7.1 5.0 12.3 13.3

1/ exp(−rO
k /10Å) -9.6 -17.8 -28.4 -37.4 -45.1 -51.1 -46.6 -30.2 -19.9 -7.0 5.1 12.3 13.4

exp(−rH
k /1Å) -4.3 -1.2 2.7 8.1 15.7 26.6 36.0 35.0 33.9 23.0 18.3 9.1 8.7

exp(−rH
k /2Å) -3.0 2.5 9.9 17.8 26.2 39.2 48.3 43.0 36.9 24.5 15.4 4.0 1.1

exp(−rH
k /3Å) -2.0 4.2 12.4 21.0 29.4 41.5 49.4 42.8 35.1 23.0 12.9 1.6 -2.2

exp(−rH
k /4Å) -1.6 4.7 13.2 21.9 30.2 41.7 49.0 42.1 33.9 22.3 11.8 0.9 -3.4

exp(−rH
k /5Å) -1.4 4.9 13.4 22.2 30.5 41.6 48.6 41.6 33.3 21.9 11.3 0.7 -3.8

exp(−rH
k /7Å) -1.4 4.9 13.5 22.4 30.6 41.4 48.1 41.2 32.8 21.6 10.9 0.7 -4.1

exp(−rH
k /10Å) -1.4 4.9 13.4 22.4 30.6 41.3 47.7 40.9 32.5 21.5 10.7 0.8 -4.2

1/ exp(−rH
k /1Å) 2.9 0.2 -4.2 -9.8 -17.8 -31.4 -39.3 -39.0 -37.1 -23.8 -16.9 -8.2 -5.9

1/ exp(−rH
k /2Å) 2.5 -2.5 -9.3 -17.6 -27.4 -43.0 -52.5 -47.9 -42.8 -27.2 -16.2 -5.4 -1.2

1/ exp(−rH
k /3Å) 1.8 -3.9 -11.7 -21.6 -31.3 -46.5 -55.7 -49.5 -42.5 -27.0 -15.0 -3.7 1.5

1/ exp(−rH
k /4Å) 1.5 -4.5 -12.7 -23.0 -32.6 -47.1 -55.8 -49.1 -41.4 -26.7 -14.3 -3.1 2.6

1/ exp(−rH
k /5Å) 1.3 -4.8 -13.1 -23.6 -33.1 -47.0 -55.2 -48.3 -40.4 -26.4 -13.9 -2.8 3.1

1/ exp(−rH
k /7Å) 1.2 -5.0 -13.5 -24.0 -33.2 -46.2 -53.8 -46.9 -38.9 -25.8 -13.4 -2.6 3.4

1/ exp(−rH
k /10Å) 1.3 -5.0 -13.6 -23.9 -32.9 -45.2 -52.3 -45.5 -37.3 -24.9 -12.7 -2.3 3.6

sigm(3Å− rH
k ) -4.2 -0.5 5.1 11.1 19.2 31.9 41.5 38.9 36.2 24.5 18.2 7.9 6.4

sigm(4Å− rH
k ) -4.1 0.3 6.9 13.4 21.6 34.8 44.2 40.4 36.4 24.5 17.2 6.2 4.2

sigm(5Å− rH
k ) -3.6 1.7 9.0 16.1 24.3 37.6 46.4 41.2 35.8 23.8 15.4 4.1 1.5

sigm(7Å− rH ) -2.2 4.4 12.3 20.5 28.2 40.5 48.1 41.2 33.3 21.8 11.9 0.6 -2.8

sigm(10Å− rH
k ) -0.1 5.6 13.8 22.4 29.7 40.2 46.9 39.3 30.8 20.0 9.6 -1.0 -5.3

1/sigm(3Å− rH
k ) 3.0 -0.4 -5.5 -11.8 -20.6 -35.1 -44.0 -42.0 -39.5 -25.6 -17.1 -7.5 -4.7

1/sigm(4Å− rH
k ) 3.1 -1.0 -6.8 -13.7 -22.8 -37.9 -47.2 -43.8 -40.6 -26.3 -16.9 -6.6 -3.4

1/sigm(5Å− rH
k ) 3.1 -1.8 -8.4 -16.2 -25.6 -41.2 -50.7 -45.8 -41.2 -26.4 -16.1 -5.3 -1.7

1/sigm(7Å− rH
k ) 2.3 -3.8 -11.3 -21.0 -30.1 -45.7 -55.3 -48.1 -40.8 -25.6 -13.9 -2.8 1.9

1/sigm(10Å− rH
k ) 0.5 -5.2 -13.2 -23.9 -32.4 -46.5 -55.6 -47.9 -39.4 -24.9 -12.7 -1.6 4.3

hard(3Å− rH
k ) -0.2 -0.8 -3.3 0.7 4.4 12.6 17.6 20.8 21.5 14.1 12.3 9.3 12.9

hard(4Å− rH
k ) -5.2 -2.8 0.6 5.6 13.2 22.6 31.5 31.5 32.3 22.7 19.1 10.5 9.8

hard(5Å− rH
k ) -3.7 -1.5 4.6 7.8 15.3 25.5 33.7 32.7 31.4 21.3 16.4 7.3 6.7

hard(7Å− rH
k ) -4.6 3.0 11.2 19.1 26.8 39.3 46.3 39.9 32.7 20.7 11.6 0.8 -2.0

hard(10Å− rH
k ) 0.1 5.8 13.3 21.4 28.5 38.8 45.8 38.2 30.1 19.8 9.5 -1.2 -5.0

exp(−rN
k /3Å)(BB) -1.9 4.8 13.8 23.5 33.3 44.7 50.6 43.4 34.1 22.1 11.3 0.5 -5.2

1/hard(7Å− rC
k ) (all) -0.1 -7.6 -16.5 -26.8 -38.1 -53.5 -51.1 -36.7 -25.6 -12.8 -1.5 7.4 10.0

Dcom -3.3 -10.3 -19.3 -28.1 -34.6 -42.2 -42.7 -32.2 -22.8 -12.8 -1.4 7.0 10.1
Tail, M = 1 -5.7 -6.0 -7.6 -10.6 -17.4 -23.4 -40.8 -12.3 -10.8 -5.3 3.1 1.7 4.6
Tail, M = 2 -5.3 -6.5 -8.5 -10.8 -17.3 -41.0 -45.1 -26.1 -9.9 -3.3 2.7 4.3 6.4
Tail, M = 3 -4.8 -6.0 -8.3 -11.1 -33.0 -41.3 -42.1 -29.7 -15.4 -1.2 5.1 6.1 9.6
Tail, M = 4 -3.0 -5.6 -7.7 -27.2 -34.1 -39.7 -38.5 -27.4 -19.4 -6.0 6.7 8.9 11.2
Tail, M = 5 -1.2 -3.9 -22.7 -28.6 -33.9 -36.5 -34.8 -25.1 -18.5 -10.4 2.2 10.6 12.6
Tail, M = 6 -0.9 -17.3 -23.4 -28.4 -31.3 -33.3 -31.7 -22.5 -17.1 -9.7 -2.6 5.3 12.8
DSSPcont G -5.1 -9.0 -15.2 -11.6 -5.4 -2.8 -0.7 -2.1 -2.7 -0.4 0.8 6.5 4.6
DSSPcont H -6.4 -0.4 5.9 13.1 17.9 22.0 26.3 25.3 21.4 16.5 10.7 6.5 2.4
DSSPcont I -3.4 -6.0 -5.7 -2.5 -0.4 -2.4 0.0 0.3 0.9 0.8 2.0 3.5 2.9
DSSPcont T 2.1 -1.4 -3.1 -9.7 -7.5 -1.5 -1.1 -3.7 -0.3 2.3 4.5 9.3 10.2
DSSPcont E 2.7 5.9 7.3 10.1 12.8 14.9 11.6 4.9 -0.1 -6.9 -12.4 -9.4 -9.3
DSSPcont B 5.5 3.9 3.1 1.4 -0.3 -0.0 3.3 0.4 0.6 -2.8 -1.5 1.9 -5.5
DSSPcont S 8.7 3.3 1.0 -7.5 -14.3 -15.1 -19.5 -14.3 -9.0 -3.4 1.1 0.2 4.2
DSSPcont L -0.3 -1.3 -6.5 -11.4 -21.5 -36.4 -37.0 -27.4 -19.9 -10.7 -1.5 -4.0 1.1
Secondary -5.4 -0.8 5.0 14.5 26.5 39.2 42.9 31.4 22.0 10.5 0.7 3.5 -3.0
Bend (-1, 0, 1) 2.4 1.6 -0.6 -4.5 -10.0 -21.4 -23.2 -20.3 -18.0 -16.2 -13.0 -11.0 -7.0
Bend (-2, 0, 2) 2.6 2.1 0.5 -2.6 -7.0 -11.8 -15.5 -18.6 -17.7 -17.1 -14.7 -12.7 -9.0
loop left -0.9 -1.5 -4.5 -8.0 -14.8 -22.4 -24.6 -24.8 -16.0 -12.1 -9.0 -7.2 -6.7
loop right -8.6 -8.3 -15.4 -20.9 -24.3 -26.4 -34.8 -14.4 -5.7 -0.8 4.7 3.7 5.2
Residue Size -5.2 -0.6 0.4 4.7 7.6 10.4 9.4 8.5 8.1 1.8 1.1 -6.2 -8.0
BB H-bonds energy 7.4 -1.4 -7.3 -15.3 -23.1 -28.5 -35.5 -32.8 -26.7 -14.6 -6.7 0.9 3.8
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Table 6: Optimized weights and bias parameters
Feature Parameter Value

exp(−rO
−1/3Å) W1(1) -2.56

exp(−rH
0 /2Å) W1(2) -1.94

Secondary, k = 0 W1(3) -0.821
DSSPcont L, k = 0 W1(4) -0.270
Bend(-1,0,1), k = 0 W1(5) 0.292
Tail, M = 4, k = 0 W1(6) 0.730

~b1 0.652
W2 -4.64
~b2 2.01

network, must be limited. After some experimentation, we decided to use just

one hidden unit and six features. The cells of tables 4 and 5 corresponding

to the features presently incoportated into the model are marked in bold font

and underlined.

The optimized values of the model parameters are shown in table 6. The

results of cross-validating the optimized parameters for these features are

shown in figure 7. Although the predictions themselves are affected by the

initial normalization of the S2, the average correlation used as the measure of

the prediction quality is the same, whether we compare the predictions to the

normalized S2 or the original unnormalized data. The average correlation

between experimental and predicted values of S2 during the cross-validation

procedure equals 71.4%.
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Figure 7: Correlations between predicted and experimental S2. (- - -)
Zhang-Brueschweiler formula; (—) neural network predictions during cross-
validation. Abscissa shows the protein index from table 3
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Figure 8: The backbones of the first 5 NMR models of the forkhead domain
of the adipocyte-transcription factor freac-11 (S12) (PDB code: 1D5V)

10 Sensitivity to Structure

To illustrate the sensitivity of the predictions to the protein structure, Figure

9 shows the S2 predictions for the first 5 NMR models of the forkhead do-

main of the adipocyte-transcription factor freac-11 (S12) (PDB code: 1D5V)

(Shown in Figure 8).

11 Discussion and Conclusion

Correlations have been examined for features for residues in positions −6 to

+6 relative to the residue for which S2 is to be predicted. The correlations

shown in tables 4 and 5 are dominated by residues in the −1, 0, and +1 posi-

tions. Features for residues in positions further away are much less correlated

with S2.
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Figure 9: S2 predictions for the first 5 NMR models of the forkhead domain
of the adipocyte-transcription factor freac-11 (S12) (PDB code: 1D5V)

In the present case, residue size is much less important than local pack-

ing density and secondary structure state. The importance of local packing

density agrees with the results reported by Zhang and Brueschweiler [43].

Packing density, parameterized differently, was also found to be critical in

determining crystallographic B-factors [28]. The relative unimportance of

residue size appears to differ from the results of Goodman and coworkers

[29]. However, in that earlier study, average values of S2 for each amino acid

residue were determined first and then correlated with residue side chain vol-

ume. This procedure averages over differences in local packing density and

secondary structural state and consequently accentuates the dependence on

side chain volume compared to the present approach.

The Zhang-Brueschweiler formula for predicting S2 is

S2 = tanh
[
2.656(exp(−rO

−1/1Å) + 0.8 exp(−rH
0 /1Å)

]
− 0.1. (93)
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This formula corresponds to the parametrization expression:

F = s2(W2s1(W1~x) + ~b2), (94)

and can be thought of as a 2-layer perceptron with two inputs (exp(−rO/1Å)

and exp(−rH/1Å]). The first layer has a transfer function is s1(x) = tanh(x),

W1 = [2.656, 2.125], and no bias. The second layer has a transfer function

s2(x) equal to the identity operation, W2 = 1, and a bias b2 = −0.1. As

can be seen from figure 7, a consistent improvement in prediction is obtained

using the neural network model presented herein compared to the Zhang-

Brueschweiler formula. Both the present model and the Zhang-Brueschweiler

formula use distances to carbonyl oxygen and amide hydrogen atoms as im-

portant inputs. The improvement obtained by the neural network results in

part from the different characteristic length used, 3 Åand 2 Å, for normaliz-

ing carbonyl oxygen and amide hydrogen distances, respectively, and in part

from additional features in the neural network. Neither the change of the

characteristic lengths, nor the addition of any single feature are responsible

for most of the accuracy improvement.

Few studies of the accuracy of experimental measurements of S2 have

been reported. Difficulties in controlling for differences in the models used

to fit experimental data is a confounding factor in attempts to determine

absolute accuracy of experimental values of S2 [39]; consequently, whether

further improvements in prediction accuracy are limited by the quality of

the experimental S2 data or merely by the size of the feature set that can be
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stably parameterized is unknown.

Conclusion

In summary, for chemical exchange, it was theoretically shown that, outside

of the fast-exchange limit, NMR experiments can be used at a single magnetic

field strength to extract the information about the individual sites, such as

their Larmor frequencies, as well as the transition rates and the equilibrium

populations. Analytical expressions with a wide range of applicability have

been derived for the two-site exchange. For more than two exchanging sites,

analytical expressions have been obtained for the R1ρ relaxation rate pro-

vided that the population of one of the sites is dominant. Moreover, it was

demonstrated through simulation, that even outside of this limit, and pro-

vided that the exchange is not fast, specific information about the exchanging

sites and the exchange rates can be extracted from the R1ρ dispersion curve.

For small-scale, picosecond to nanosecond time scale conformational fluc-

tuations, a consistent formalism was applied to compare the statistical im-

portance of the various features. Non-linear regression methods in the form

of the artificial neural netorks were used to predict the model-free order pa-

rameters from protein structure alone. The prediction method using neural

networks provided a small but consistent improvement in the prediction ac-

curacy over the existing approaches.

One of the future directions of this research might be to apply the artificial
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neural networks to the prediction of fast side-chain dynamics.
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